A Service Oriented Architecture
for Context-Awar e Systems

Moeiz Miraoui, Chakib Tadj

LATIS Laboratory, Université du Québec, Ecole de technol ogie supérieure
1100, rue Notre-Dame Ouest, Montréal, Québec H3C 1K 3 Canada
{Moeiz.Miraoui.l@ens, ctadjeele}.etsmtl.ca

Abstract. Devices in a pervasive system must be context-aware in order to
provide services adapted to the global context. Architectures of context-aware
systems should take into account many settings of a pervasive environment to
be useful. Several context-aware architectures were proposed however most of
them are specific to a particular application and have some limitation which
reduces their usability by developers. In this paper and based on our previous
work on defining context and context-awareness, we will propose a multi-agent
service oriented architecture for context-aware systems. The architecture is
based on the concept of service which plays an important part in the operation
of a pervasive system. Our architecture is a hybrid form between client/server
and peer-to-peer models. In addition of the advantages of those models, the
proposed architecture enhances the extenshility, reusability, security of
context-aware systems and takes into account the dynamic aspect of a pervasive
environment. We will discuss in deep the contribution of the proposed
architecture and its relation with other ones.

1 Introduction

In a pervasive system, the user’ s environment is populated with communicating smart
devices. These devices provide adapted services to both the user and application. This
adaptation is made according to the global context. Devices sense the global context
and react proactively (without an explicit intervention of the user) to the changes of it.
The god is to help user in his everyday life's tasks. To-do so, devices in pervasive
system must be context-aware thus context is a key concept in such systems. Context
must be well understood to provide a better adaptation. In previous work [1] we have
proposed a definition of both context and context-awareness based on the concept of
service because it seems for us that this latter plays a crucial role in the adaptation
task. Those definitions are more generic than others and make a good compromise
between abstraction of the term and limitation of the set of required information for
adaptation.

In the last few years many architectures of context-aware systems were proposed to
support the development of these systems. Most of them are specific to particular
applications and have limitations in many levels (management of contextual
information, communication between devices, flexibility and reusability). In this
paper we will present a multi-agent architecture for context-aware systems based on

A. Gelbukh, S. Suarez, H. Calvo (Eds.) Received 31/08/07
Advances in Computer Science and Engineering Accepted 19/10/07
Research in Copmuting Science 29, 2007, pp. 236-244 Final version 24/10/07

A Service Oriented Architecture for Context-Aware Systems 237

the concept of service. Our architecture takes into account the dynamic aspect of
pervasive systems, more generic (applicable to a large variety of applications) and
modular which enhance its reusability.

This paper is organized as follows: section Il presents a review of previous
architectures of context-aware systems, discuss them and then present our multi-agent
architecture. We will argument both the use of such architecture (multi-agent) and the
importance of the concept of service. In section |11 a discussion is presented to show
the originality of our approach and our contribution. Finally, we will conclude this
paper and present our further work.

2 Context-Aware Architectures

2.1 Previous Ar chitectures

Most of proposed architecture of context-aware systems makes a separation between
the context sensing and the using process. This alows an abstraction of low level
details of sensing and enhances the extensibility and reusability of systems. Among
proposed architectures, there are basically two categories depending on whether the
contextual information are centralized or distributed. The first strategy consists of
using a context server where will be grouped the collected information from different
sensors and provided to applications on demand. Examples of this category are,
CoBrA [3], SOCAM [4], etc. In the second category, contextual information is
distributed between entities of the system and uses the peer-to-peer communication
model for information exchange. Examples of this category are the HY DROGEN
architecture [2], the context toolkit [5] and the contexteur [6]. A survey on different
architectures is done by Baldauf et al. [7]. It shows that most of them are layered
architectures [8, 9, 10, 11] with basically the following layers:

e Sensing layer: it enables the physical sensing of contextual information using
different kind of sensing.

e Interpretation layer: it makes transformation of gross information sensed by
the previous layer to significant and useful information.

e Reasoning layer: it is not included in al architectures and permits the
deduction of new information from existing ones and makes a prediction of
context from previous cases which add the aspect of intelligence to the
system.

e Management and storing layer: makes the management of contextua
information (add, retrieve, up-date, searching, etc.) and the storing in an
appropriate format.

e Adaptation layer: makes service adaptation according to context.

In the following we take a look at some architecture and analyze the approaches
used in each. The context toolkit [5] was proposed to support development of context-
aware systems. It is a layered architecture to separate the acquisition and the
representation of context from the delivery to applications. It is based on context
widgets acting similarly as GUI widgets to hide the complexity of physical sensors

238 Moeiz Miraoui, Chakib Tadj

used by applications which gives context more abstraction and provides reusable and
customizable building blocks of context sensing. The layers of the architecture are:
sensors, widgets, interpreters, services and discoverers. The architecture is simple to
implement, offer distributed communication between devices and reusable widgets
however the discovery mechanism is centralized which makes it not a perfect peer-to-
peer model, it has a limited scalability when the number of components increases, the
event handling system consists of creating a thread for each event which implies an
important overload of the system and does not include a context reasoning engine.

HYDROGEN [2] is architecture and a software framework to support context
awareness. It is a three-layered architecture to suit special needs of maobile devices:
adaptor layer, management layer (context server) and application layer. The context
server contains all information sensed by adaptor layer and provides application layer
with needed context or other devices by using a peer-to-peer communication. The
hydrogen approach considers context as al relevant information about an
application’s environment and describes it using an object oriented model. This
approach is very simple to implement, the three-layered architecture is located on one
device thus making it robust against network disconnections, takes into account
limited resources of a mobile devices (memory, CPU, etc.) and overcome the problem
of centralized architecture by using a peer-to-peer communication model between
devices. However the adaptor layer makes both the sensing and the interpretation of
context which does not offer the abstraction level needed for context in context-
awareness and makes context very dependant on sensors which affect the reusability
of the architecture’s components also the architecture does not include a reasoning
layer about context which makes it a ssimple database of contextua information rather
than a smart device that adapt dynamically according to current context.

SOCAM [4] is a service oriented context-aware middleware architecture for the
building and rapid prototyping of context-aware mobile services in an intelligent
vehicle environment. It is a layered architecture with the following layers. context
providers, context interpreter (context reasoning and context knowledge), service
locating service, context-aware mobile services and a context database. It is based on
the client/server model where the context interpreter collects contextual information
from context providers (internal/external) and context database and delivers them to
both context-aware mobile services and service location service. The main strength of
the SOCAM architecture is its reasoning system which uses ontologies to describe
context enabling then formal analysis of domain knowledge (context reasoning). It
uses two classes of ontologies: domain specific and generalized and multiple
reasoners can be incorporated into context interpreter to support various kinds of
reasoning tasks. However the architecture is used for the development of a small
specific application (intelligent vehicle) which limits its usability for a wide range of
pervasive systems. Both reusability and extensibility of the architecture are not
argumented by the authors in particular, the component of the architecture are specific
to the application developed and can not easily used for other systems (more open
than a vehicle environment and with different characteristics) also to add/remove a
device an explicit update of components is needed this is added to the major problem
of acentralized model (when the server falls down).

CoBrA [3] is broker-centric agent architecture to support context-aware computing
in smart spaces. The broker is an autonomous agent that manages and controls the

A Service Oriented Architecture for Context-Aware Systems 239

context model of a specific domain and runs on a resource-rich stationary computer.
The broker has a layered architecture composed of context knowledge base, context
reasoning engine, context acquisition module and privacy management module. The
broker acquires context information from devices, agents (applications) and sensors
located in its environment and fuse them into a coherent model which is then shared
with devices and their agents. CoBrA uses ontologies to describe context thus
enabling a good reasoning mechanism and a better share of contextual information, it
uses a centralized design for storage and processing because mobile devices in a
pervasive system have limited computing resources and introduces the user’s privacy
policy. However the centralized design is also its weakness, when the broker falls
down all the system is affected and become useless. The fact of using a server for
context in a pervasive system contradict the nature of context in such a system which
is generaly distributed in addition to overloading the system with the using of a
server running on a stationary computer.

Severa other architectures exist but they do not differ alot from the ones listed in
this paper which seem to us the most relevant.

The modeling of contextual information is a fundamental step for every adaptation
system. The modeling task consists of providing an abstract representation of
contextual information in both data structure level and semantic level which ease their
manipulation. Many methods of modeling were proposed having particularities
related to used techniques. A detailed discussion of these methods is out of the scope
of this paper but Strang and al. [12] did a survey on them and distinguished basically
the following models for context representation: a) Key-value models, b) Mark-up
scheme models, ¢) Graphica models, d) Object oriented models, €) Logic based
models, and f) Ontology based models.

According to the authors, the context representation based on ontology model is a
promising method for the design of context management system adapted to a
pervasive computing environment.

The proposed architecture is specific to a particular application domain (human-
computer interaction, mobile computing, etc.). Context server based systems have the
principal problem of centralized systems: if the server breaks down, the other devices
of the system will be automatically affected. It needs more effort for the
administration task. Also it contradicts the nature of contextual information in
pervasive system which is generally distributed. The peer-to-peer architecture in
particular the one proposed by Dey and al. [5] doesn’t allow an efficient reasoning on
context because the method used to represent context is limited (key-value model)
and does not support a robust logic reasoning. The architecture proposed by Rey and
al. [6] requires a strong communication between entities and does not take into
account the limited resources (energy, processing, etc.) of devices in a pervasive
system and the possibility of loosing connection even though it uses a distributed
architecture which offers many advantages compared to the context server
architecture. To summarize, there are two major aspects that need more attention and
work in most proposed architectures:

e Flexibility: architectures must be more flexible and take into account the
dynamic changes in a pervasive environment (add, suppression of
devices).

240 Moeiz Miraoui, Chakib Tadj

e Reusability: architectures must offer reusable modules to ease their
integration in other pervasive systems in order to decrease the effort of
devel opment.

2.2 Service based Architecture

The main objective of a pervasive system is to provide proactively adapted services to
both the user and the applications. Thus the concept of service plays a crucial part for
the operation of such a system. As we defined in our previous work [1] context and
context-awareness based on the concept of service, we will use those definitions in
order to design architecture for context-aware systems based on the same concept.
The architecture is peer-to-peer and multi-agent (the use of multi-agent approach will
be augmented progressively).

A pervasive system is composed of a set of communicating smart devices and
provides adapted services according to the global context in various forms (various
qualities of services) by using different media and modalities (figure 1). In our
approach, for every device, a service will be modeled with a deterministic finite state
automata whose states are the forms of services (among several forms) offered by a
device. Transitions between states (from a service form to another) are due to changes
in values of contextual information (since we defined context [1] as any information
that trigger a service or change the quality (form) of a provided service). So we can
easily limit the set of contextual information for every service and enable it to adapt
accordingly.

For example calls indication for a cellular phone has several forms. ring tone,
vibrator, ring tone with vibrator and silent. For simplicity, we will look to the two
forms of this service: ring tone and ring tone with vibrator. Initially the cellular phone
indicates calls with ring tone. It senses the level of noise of its environment; if it is
high (over afixed value) it changes automatically the form of service to ring tone with
vibrator to draw the attention of the user. Figure 2 shows the finite state automata for
calsindication.

In the following we will give the architecture for a service inside a device then the
architecture of a device in a pervasive system and finally the global architecture.
Figure 3 show that a service of a device may be provided in several forms. These
forms are related with deterministic finite state automata. For each form there are a set
of media and modalities depending on it.

In a pervasive system, a service has the following characteristics:

e Reactive entity: a service perceives the changes of the global context using
its device' s sensors and reacts by changing its form or itsrelease.

e Autonomous: It can be provided in various forms independently of other
services and devices.

A Service Oriented Architecture for Context-Aware Systems 241

4 N
{ I} }
[Device 1] - IDeV||ce K] -~ [Device N]|

Form 1| -~ [FormN
I —
g Vi J

Fig. 1. A device provide several services in different forms: The change in value of x; will
trigger servicel. The change in value of y; will change the form of service.

e Proactive: It can be equipped with mechanisms enabling it to take initiatives
to react (to predict the future form of a service).

e Sociahility: it can exchange contextual information with other services to
make aggregation (fusion) of context or to acquire useful information which
isnot provided by its main device.

W Medium ervice x
@ Modality >
& Is composed of

Noise level = high

. Ring tone with U
Ring tone vibrator
Noise level = low %@
Ceom s
Fig. 2. A part of the finite state automata for Fig. 3. Example of aservice having
callsindication. three forms.

These are the principa characteristics of a software agent. For this reason, each
service of a device will be modeled by an agent with internal states. These agents will
be controlled and managed by a central agent (device agent) who plays the part of a
context server for other agents (service agents). Each agent must be registered for a
set of contextual information that concernsit. The service agent will be natified by the
central agent each time the value of one of these information changes (to limit
information flow). Also the communication with other service agents of the same
device will be made only via the central agent (figure 4). In the case of a smple
sensor, it will be modeled by a central agent without service agents since it provides
one type of services (collect information).

The central agent of a device perceives the changes of the values of contextual
information via the device's sensors or by communication with the other central
agents of the other devices composing the pervasive system. If a change of contextual
information concerns one of its service agents, then it communicates to it the change
of value. With this intention, each central agent holds a list of contextual information
which concerns each one of its service agents. With the reception of this information,
the concerned service agent reacts either by a transition in its finite state automata to
change the form of service or by triggering the service it self (initial form).

The central agent has layered architecture containing in addition of basic layers
(sensors, interpretation, reasoning, management/storing and adaptation) two modules

242 Moeiz Miraoui, Chakib Tadj

of communication: internal module for exchange of information with the device
service agents and an external module for the exchange of information with the other
central agents of the pervasive system. If a central agent perceives or senses the
change of value of a contextual information (through the sensors of the device) and
which concerns or not one of its service agents it broadcasts the new value to all
central agents to enable other agents to react and will be notified by concerned central
agents. This will alow the broadcaster central agent to: & remember next time the
central agents concerned with that information and b) up-date the list of active central
agents in the pervasive system. For that reason we envisage to add for each central
agent a cache memory for this type of transactions with an emptying system FIFO
(first in first out) when the memory is full. Also to use an internal cache memory for
internal transactions with the service agents (figure 5). The change of value of the
same contextual information can be broadcasted by several central agents. This
enablesit to apply afusion process for better control of errors.

Inside a device the central agent is a server to the service agents of the device
(client/server model) and in the whole pervasive system, it can be either a server or a
client for the other central agents (peer-to-peer model). The agent service has just two
tasks: @) trigger a service and b) change the form of a service (make atransition in his
automata) all the others tasks are made by the central agent (server).

- ™
5 Adaptation 8
g 8
o -
b= Store/ Management| | €
35 Q < =]
E|o o |E
o z E| 8 Reasoning S1|E
: 5|S S18
3 g 2|¢ Int tati 2ls
8 g g g nterpretation g g
= e E = Sensors wx
Service Central
\ / \ Agent Agent /
Fig. 4. The global multi-agents architecture. §;: Fig. 5. Central agent architecture.

Service agent i, CAqi: Central Agent i, <>
Communication.

3 Discussion

The architecture that we proposed is hybrid architecture: client/server in the level of
the multi-agent system (central agent is a server and service agents are clients) of each
device and a peer-to-peer in the level of multi-agent system of the set of devices that
compose the pervasive system (central agents). This makes possible to benefit from
the advantages of the two architectures. Peer-to-peer architecture allows distributing
contextual information and the processing relative to this information between the

A Service Oriented Architecture for Context-Aware Systems 243

entities (devices) of the system. This reduces the load of processing and decrease the
information flow between them. Client/server architecture allows an effective control
of concurrent and multiple accesses to contextual information (central agent) and
discharges the clients (service agents) from the operations of storage and information
management.

In the multi-agent peer-to-peer architecture for the central agents, if a device of the
pervasive system breaks down, its central agent will be inaccessible (inactive), but it
does not affect the operation of the system. Only the services provided by that device
become unavailable. A replacement by services provided by others devices is
possible.

In the same context, it is possible to add new devices to the system without
disturbing it since it will detect the new device automaticaly if it exchanges
information with one of the components of the system (extensible dynamic
architecture).

This architecture is reusable for the following reasons. the multi-agent system of a
device (central agent and service agents) can be used in another pervasive system with
minor modifications because the services offered by a device are the same ones
(example: a GPS device always provides the geographical coordinates whatever its
use).

The encapsulation of service details of a device as well as the contextual
information management model within the device reinforce the protection of the
device against undesirable accesses which can damage its quality of services (the
access isdone via an interface: central agent).

In this architecture, we did not consider the user’s context because it's implicitly
included in the device's context (example: the localization of the user is detected by a
GPS that iswith the procession of the user).

4 Conclusion and Further Work

The main characteristic of devicesin a pervasive system is their context-awareness in
order to provide adapted services. The design of architecture for such systems is a
basic task for their development and implementation. Most of proposed architectures
do not provide a lot of help to developers and have some limitations. In the light of
existing architectures of context-aware systems, and based on the concept of service,
we have proposed a multi-agent architecture. We discussed the characteristics and
strong points of such architecture that can be summarized in the following points:
hybrid architecture between client/server and peer-to-peer which takes advantages
from both architectures. Extensible with few modifications thus dynamic (add and
removal of devices). Reusable since the services of each device remain almost
unchanged whatever the enclosed system thus it is possible to use it with its multi-
agent system in another application. Easy to implement by using ready components of
multi-agent domain in particular the mechanism of communication.

Our outlined architecture requires completion on the level of communications
inter-devices and intra-devices by using the existing means of communication in
multi-agent systems as well as the context representation model. We plan to use

244 Moeiz Miraoui, Chakib Tadj

ontology which seems to us suitable for such architecture. Finally we will work on the
reasoning layer of the central agent to make it more intelligent.

References

1

10.

11

12.

M. Miraoui, C. Tadj, “A service oriented definition of context for pervasive computing,” in
Proceedings of the 16" International Conference on Computing, |EEE computer society press,
Mexico city, Mexico, November 2007.

T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger & J. Altmann, “ Context- awareness
on mobile devices — the hydrogen approach”. In Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, pages 292—-302. 2002

H. Chen, T. Finin, A. Joshi, “An ontology for context-aware pervasive computing
environments,” Knowledge Engineering Review, vol. 18, pp. 197-207, 2003

T. Gu, H. K. Pung, D. Q. Zhang, “ A middleware for building context-aware mobile services’,
in the proceedings of IEEE Vehicular Technology Conference (VTC 2004). Milan, Italy

A. K. Dey, G. D. Abowd, “ A Conceptual framework and a toolkit for supporting rapid
prototyping of context-aware applications’, anchor article of a special issue on Context-Aware
ComputingHuman-Computer Interaction (HCI) Journal, Vol. 16 (2-4), 2001, pp. 97-166.

G. Rey, J Coutaz, “ Le contexteur : capture et distribution dynamique d'information
contextuelle”, ACM transaction pp. 131-138 Mobilité & ubiquité, 2004

M. baldauf, S. Dustdar, F. Rosenberg, “A survey on context-aware systems’ International
Journal of Ad Hoc and Ubiquitous Computing forthcoming, 2004

P. Korpipda, J. Mantyjarvi, J. Kela, H. Kerdnen, E. Malm. “Managing Context Information in
Mobile Devices’. IEEE Pervasive Computing. 2003

P. Fahy, S. Clarke. “CASS — Middleware for Mobile Context-Aware Applications’. MobiSys
2004

G. Biegd, V. Cahill. “A Framework for Developing Mobile, Context-aware Applications’. In
Proceedings of 2nd IEEE conference on Pervasive computing and Communications, Percom
2004

M. Romén, C. Hess, R. Cerqueira, A. Ranganat, R. H. Campbell, K. Nahrstedt. “Gaia: A
Middleware Infrastructure to Enable Active Spaces’. In |EEE Pervasive Computing, Oct-Dec
2002.

T. Strang, C. Linnhoff-Popien, “ A context modeling survey“ In the first International
Workshop on Advanced context modeling Reasoning and management. UbiComp 2004

